Kalkbildung – ein Auslaufmodell für einzelliges Phytoplankton?
Internationales Forscherteam errechnet Kosten und Nutzen der Kalzifizierung
Coccolithophoriden, einzelliges Phytoplankton, das eine wichtige Rolle für die Stoffkreisläufe im Ozean, für das marine Nahrungsnetz und für das globale Klima spielt, schützt sich durch verschiedenartig geformte Kalkstrukturen vor Fraßfeinden und Schäden. Doch die Kalkbildung kostet die Einzeller viel Energie. Der Preis für die kunstvolle Armierung könnte bei fortschreitendem Klimawandel sogar noch steigen. Mit Hilfe eines neuartigen Modells analysierte ein internationales Forscherteam unter Beteiligung des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel Kosten und Nutzen der Kalkbildung. Die Ergebnisse lassen vermuten, dass die ökologische Nische für Kalkalgen in Zukunft enger wird.
Sie hüllen sich in undurchdringliche Schuppenpanzer, bewehren ihr Äußeres mit spitzen Stacheln, entfalten Sonnenschirme oder strecken trompetenförmige Sammeltrichter nach dem Licht aus – Coccolithophoriden, einzellige kalkbildende Phytoplankton-Arten, umgeben ihr Inneres mit verschiedenartigsten Schalen. Um die Frage nach dem Zweck der kunstvollen Gebilde zu beantworten, fügten Forschende aus Deutschland, Großbritannien, Frankreich und den Vereinigten Staaten Ergebnisse von Studien zur Evolutionsgeschichte und Zellbiologie sowie aus Labor- und Freilandexperimenten zusammen. Denn nur, wer versteht, weshalb diese Organismen ihre Kalkschalen aufbauen, kann auch abschätzen, inwieweit sie unter den Folgen des globalen Wandels leiden werden. Mit Hilfe eines neuartigen Modells untersuchte das internationale Team den Energieaufwand und Vorteile, die die Einzeller durch die Kalkbildung gewinnen. Die Ergebnisse sind in der aktuellen Ausgabe des Fachmagazins Science Advances veröffentlicht.
„Vermutlich schützten sich die Algen mit ihrer Kalkschale ursprünglich vor allem vor Fressfeinden. Weil die verschiedenen Strukturen noch andere Vorteile mit sich brachten, entstand eine Vielzahl von Formen, die diese Vorteile weiter ausnutzten“, erklärt Prof. Ulf Riebesell, Meeresbiologe am GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel und Co-Autor der Studie. Bisher zahlte sich der hohe Energieaufwand für die Kalzifizierer aus: „Coccolithophoriden haben mehr als 200 Millionen Jahre überlebt. Jetzt ist fraglich, ob sie auch dem Klimawandel standhalten“, so Prof. Riebesell.
Die rund 200 Coccolithophoriden-Arten produzieren bis zu zehn Prozent der Biomasse in den Weltmeeren und halten den marinen Kohlenstoffkreislauf in Schwung. Beschwert mit ihren Kalkplättchen, sinkt organisches Material zum Ozeanboden. So kann neues Kohlendioxid aus der Atmosphäre in höhere Wasserschichten aufgenommen und dort verarbeitet werden. Zudem setzen Coccolithophoriden das klimakühlende Gas Dimethylsulfid (DMS) frei – ein weiterer „Service“, der dazu beiträgt, das Klima zu stabilisieren.
Ob die einzelligen Multitalente ihre Funktionen auch in Zukunft erfüllen können, hängt davon ab, wie viel zusätzliche Energie sie für die Kalkbildung aufbringen müssen und wie ihre Konkurrenten im Nahrungsnetz ihrerseits auf den Ozeanwandel reagieren. Wenn durch die noch immer zunehmenden Emissionen zusätzliches Kohlendioxid im Meerwasser gelöst wird, steht auch mehr für die Photosynthese zur Verfügung – sie wird leicht stimuliert. Andererseits erschwert der verringerte pH-Wert die Kalkbildung. „Coccolithophoriden werden im Vergleich zu anderen Plankton-Organismen eher benachteiligt sein. Ihr Rückgang hätte auch Auswirkungen auf das Klimasystem“, fasst Dr. Lennart Bach, zweiter Ko-Autor der Studie vom GEOMAR, zusammen. „Modellrechnungen wie unser neuer Ansatz sind daher wichtig, um auszuloten, wie sich ein erhöhter Energieaufwand, wie hier bei der Kalkbildung, in Zukunft auf die Organismen auswirken wird und welche Konsequenzen dies für die Planktongemeinschaft haben wird. So schlagen wir den Bogen von Einzelorganismen auf das gesamte System.“
Originalveröffentlichung:
Monteiro, F.M., Bach, L.T., Brownlee, C., Bown, P., Rickaby, R.E.M., Poulton, A.J., Tyrrell, T., Beaufort, L., Dutkiewicz, S., Gibbs, S., Gutowska. M.A., Lee, R., Riebesell, U., Young, J., Ridgwell, A. (2016): Why marine phytoplankton calcify. Science Advances, doi: 10.1126/sciadv.1501822
Links:
www.geomar.de GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
www.bristol.ac.uk University of Bristol
www.mba.ac.uk Marine Biological Association
www.ucl.ac.uk University College London
www.ox.ac.uk University of Oxford
http://noc.ac.uk National Oceanography Centre
www.cerege.fr Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement (CEREGE)
http://web.mit.edu Massachusetts Institute of Technology
www.mbari.org Monterey Bay Aquarium Research Institute
www.nhm.ac.uk Museum of Natural History London
http://universityofcalifornia.edu University of California
www.oceanacidification.org.uk UKOA (UK Ocean Acidification Research Programme)